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ABSTRACT: Tendon injuries are frequent and occur in the
elderly, young, and athletic populations. The inadequate
number of donors combined with many challenges associated
with autografts, allografts, xenografts, and prosthetic devices
have added to the value of engineering biological substitutes,
which can be implanted to repair the damaged tendons.
Electrospun scaffolds have the potential to mimic the native
tissue structure along with desired mechanical properties and,
thus, have attracted noticeable attention. In order to improve
the biological responses of these fibrous structures, we
designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a
thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical
properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone
morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically
stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in
terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed
constructs can be used for engineering functional tendons.
KEYWORDS: tendon tissue engineering, composite scaffolds, nanofibrous materials, mechanical stimulation, stem cell differentiation

■ INTRODUCTION
Tendons are organized connective tissues that transfer forces
generated by skeletal muscles to bones in order to move them.
Meanwhile, they withstand high stress frommuscle contractions
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and avoid overloading bones. Thus, tendons are essential in the
normal movement of the body. They are highly organized
tissues, which are comprised of aligned, multiscale, and
hierarchical collagen fibers.1 Due to their structure, tendons
are capable of carrying loads, supporting and stabilizing the joint
while preventing bone dislocation.2 Tendon injuries arise mostly
from high-pivoting sporting activities such as skiing, basketball,
and football. Additionally, degenerative tissue processes occur
quite often, mainly in the middle-aged and elderly population.3

However, the low number of cells and low blood supply to
tendons reduce their regenerative and reparative capability.4

Clinical treatments of tendon injuries are based on surgical
suturing of damaged tendons as well as the use of auto- and
allografts.5 These surgical procedures are associated with a
number of major challenges including the lack of a sufficient
number of auto- and allografts, the significant chance of rejection
of allografts, and infections.6 Because of these reasons,
engineered biological substitutes with biomimetic, mechanical,
and biological properties have attracted noticeable attention to
replace or repair injured tendons.7

Various strategies are devised for the production of scaffolds
with biomimetic architectures and anisotropic mechanical
properties for tendon tissue engineering. Fiber-based ap-
proaches including weaving, knitting, braiding, and electro-
spinning have been widely explored for engineering fibrous
structures with adequate mechanical properties.8 Among them,
electrospinning and braiding have been more successful and
popular in generating highly organized fibrous constructs with
anisotropic mechanical properties.9,10 Electrospinning allows
the production of very fine fibers in the range of 100 nm to a few
micrometers by flowing a polymer solution through a needle
placed in an electric field.11 Nanofibrous scaffolds offer some
unique advantages such as large specific surface area and high
porosity. Furthermore, the electrospinning technique could be
used for the production of aligned and organized nanofibrous
scaffolds, recapitulating the collagen fiber direction structure of
anisotropic tissues and directing the cell adhesion.12 Due to
these great advantages, electrospun nanofibrous scaffolds have
been successfully applied to musculoskeletal tissues including
bone, cartilage, tendon, ligament, annulus fibrosus, and
tendon.13−18 Even though it has been proven that synthetic
fibrous electrospun structures can mimic the native extracellular
matrix (ECM),19 they cannot provide a suitable 3D micro-
environment for cell attachment, proliferation, migration, and
differentiation due to the lack of cell-recognition sites.20

Recently, engineered composite and multicompartment fibers,
followed by their braiding, enabled the engineering of
centimeter-scale constructs. The braided constructs encapsu-
lated cells in a cell-supporting hydrogel niche where they can
easily remodel and populate the entire structure, while the
mechanical properties of the construct are tailored by the
polymeric component of the scaffolds.21−25

Some of the natural-based hydrogels have cell binding and
matrix metalloproteinase responsive motifs; as a result, cells can
spread and proliferate.26 For example, recent studies demon-
strated that tendon-derived ECM allows high cell infiltration as
well as collagen deposition and that methacryloyl gelatin
(GelMA) permits homogeneous cell distribution and pene-
tration.27,28 Thus, the physicochemical and biological properties
of the hydrogel play a key role on the growth and function of the
encapsulated cells.29

In addition to creating a suitable scaffold, the selection of cell
sources has also been the subject of various studies. Among

different cell sources for bone and tendon regeneration studies,
mesenchymal stem cells (MSCs) have been frequently used due
to their natural tendency to differentiate into these lineages.30−32

Biochemical stimulation of the cultures using growth factors
(GFs) that can potentially induce tenogenic differentiation has
been introduced to overcome the disadvantages of stem cell
therapies. Indeed, even though stem cell application is
considered as the ideal approach for clinical translation, specific
methods for inducing tenogenic differentiation are still
undiscovered. Biomechanical stimulations performed by differ-
ent GFs, such as basic fibroblast GF,33 platelet-derived growth
factor BB,34 transforming GF beta,35,36 bone morphogenic
proteins (BMPs),37,38 and growth differentiate factor 5,39 have
been lately considered to induce the tendon regeneration. GFs
can be supplied by addition into the culture media composition,
as well as by loading of the bioactive molecules into the scaffolds
structure, i.e., incorporation into electrospun fibers or
encapsulation into nanoparticles. It has been demonstrated
that GF treatment plays the main role in the chemical cellular
stimulation and in the tissue homeostasis, healing, and repair,
affecting cell proliferation, morphology and migration, collagen
production, angiogenesis, and deposition of ECM proteins.36,40

In particular, BMPs are considered crucial in skeletal tissue
development, because of their influence on osteogenic or
chondrogenic differentiation.41 In particular, it has been
demonstrated that bone morphogenetic protein 12 (BMP-12)
causes a tenogenic pathway in stem cells, up-regulating key
tenogenic transcription factors and causing significant changes
in the cell secretory activity, enhancing the secretion of VEGF
and collagenases, which might improve the regeneration process
in acute tendon injuries.42,43 Thus, BMP-12 has been pointed
out as promising for accelerating tendon healing.44,45 The
mechanisms of BMP-12 on improving tenogenic differentiation
are probably induced by activating cytoskeleton reorganization
signaling or activating the Smad1/5/8 signaling pathway.46 In
vitro studies of BMP-12 treatment of canine adipose derived
stem cells results in higher specific tenogenic gene expression,
such as scleraxis and tenomodulin, proving its potential for
tenogenic cell differentiation compared to untreated con-
ditions.37 Moreover, the implantation of human BMP-12 loaded
into an absorbable collagen sponge was reported to enhance the
healing of rotator cuff injuries in 87% of patients at a 1-year
follow-up.47 Additionally, the injection of BMP-12 in the
Achilles tendon in a mouse animal model proved to improve the
quality of tendon repair.48

The dynamic culture condition of the scaffolds has recently
demonstrated its potential for a more efficient tissue maturation.
In particular, bioreactor systems have been developed in order to
recapitulate the tissue natural conditions in vivo.49 In the case of
tendon tissue, different bioreactor devices that can apply
periodic physiological mechanical stretching have been
proposed. The mechanical stimulation of the cultures resulted
in an improvement of cell proliferation rate50 and the formation
of highly oriented cellular architecture,51 which is essential for
the proper function of tendons. Moreover, a positive effect of the
mechanical stretching on tenogenic differentiation of stem cells
has also been reported.35,38

In this work, multilayered (ML) scaffolds based on electro-
spun substrates coated with layers of cell-laden hydrogel are
explored for tendon tissue engineering. In the final scaffold, the
fibrous membrane provides the adequate mechanical properties
and the hydrogel layers mimic the ECM environment,
facilitating cell spreading and three-dimensional growth.52 The
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biochemical and mechanical stimulations of the construct were
selected to create an in vitromodel, which performs dynamic cell
culture and reproduces the tendon physiological conditions.
The influence of the scaffold composition and mechanical and
biochemical stimuli has been investigated.

■ MATERIALS AND METHODS
Materials. All the chemicals including polycaprolactone (PCL, Mn

80 000), nylon-6 (PA6), hexafluoroisopropanol (HFIP), high viscosity
alginate (Alg), methacrylic anhydride, gelatin (Type A, 300 bloom from
porcine skin), 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophe-
none (Irgacure 2959), ascorbic acid, Triton X-100, and bovine serum
albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Primary human bone marrow derived mesenchymal stem cells
(MSCs) were purchased from Roosterbio Inc. (Frederick, MD, USA).
The cells were isolated and expanded from a single deidentified human
donor bonemarrow.Minimum essential medium alpha (α-MEM), fetal
bovine serum (FBS), phosphate buffer solution (PBS), basic fibroblast
growth factor (bFGF), trypsin-EDTA, L-glutamin, collagen I
monoclonal antibody, Alexa Fluor 488 Phalloidin, and DAPI were
obtained from Life Technologies (Carlsbad, CA, USA). BMP-12 was
bought from BioVision, Inc. (Mountain View, CA, US).
Biofabrication Methods. Electrospinning of Nanofibrous

Membranes. PCL−PA6 nanofibrous membranes were fabricated
using a conventional electrospinning setup. Briefly, 10% (w/v) PCL
and 10% (w/v) PA6 were separately dissolved in HFIP. The solutions
were mixed in a 1:1 ratio in order to obtain a homogeneous polymeric
blend of 5−5% (w/v) PCL−PA6 solution. The PCL−PA6 prepolymer
solution was then transferred to a 3 mL syringe with a 23G blunt needle
tip. An electrical field of 15 kV over a fixed spinning distance of 20 cm
was applied. The flow rate of the prepolymer solution was set at 1mL/h,
and the substrates were spun for 30min to generate fibrous membranes.
Fibers were collected onto an aluminum flat collector to produce a
sheet with uniform fiber distribution. Themembrane was vacuum-dried
for 24 h and then sterilized under UV light overnight.
Hydrogel Formulation and Preparation. GelMA was synthesized

as previously described.27 Briefly, type A porcine skin gelatin was
dissolved in PBS at 50 °C in a concentration of 10% (w/v) and stirred at
240 rpm. Subsequently, 5% (v/v) of methacrylic anhydride was added
dropwise (0.5 mL/min) and stirred at 50 °C for 3 h. Afterward, 300%
(v/v) of PBS was used to dilute the gelatin solution. The final solution
was loaded in dialysis membranes (Spectro/Por molecular porous
membrane tubing, MWCO 12−14 000, Fisher Scientific) and dialyzed
in 5 L of distilled water at 60 °C and 500 rpm for 10 days. Finally, the
solution was freeze-dried to obtain lyophilized GelMA.
AGelMA 20% (w/v) solution was prepared by dissolving lyophilized

GelMA in PBS at 80 °C containing 0.2% (w/v) of Irgacure 2959 as the
photoinitiator. Alg solutions of 1%, 2%, and 3% (w/v) were prepared by
dissolving the polymer powder in deionized water at room temperature
overnight. The final solutions were prepared by mixing GelMA and Alg
solutions (1:1 ratio) in order to obtain GelMA−Alg solutions of 10%−
0.5% (w/v), 10%−1% (w/v), and 10%−1.5% (w/v), respectively.
Finally, the solutions were filtered through a 0.22 μm pore size
sterilizing filter.
Fabrication of ML Scaffolds. The electrospun membrane surfaces

were subjected to plasma treatment for 45 s and then coated with a
∼100−150 μm layer of GelMA−Alg composite hydrogel. The dip-
coating method was used to coat a thin layer of hydrogel on the fibrous
surfaces. The hydrogel was cross-linked first in a 2% (w/v) sterile
calcium chloride (CaCl2) bath for 20 s, and subsequently, photo-
polymerization was carried out by UV light exposure at 800 mW cm−2

for 30 s (Omnicure, S2000, 360−480 nm, Excelitas Tech. Corp., US).27

Morphology Evaluation. The morphology of ML scaffolds was
investigated using a scanning electron microscope (SEM; Zeiss Ultra
Plus). SEM images were acquired at 7 kV after coating the samples with
a thin layer of gold using a sputter coater. The diameter of the fibers was
evaluated from SEM images using ImageJ (National Institute of Health,
USA) by measuring the dimensions of 100 randomly selected fibers on
five independent samples.

Mechanical Characterization. Tensile Test. The mechanical
properties of the constructs were measured through a uniaxial tensile
strength test using a universal mechanical testing machine (Instron
5542, Norwood, MA). Five samples of each membrane were cut in a
rectangular shape (10 mm × 5 mm), positioned between the two grips
of the machine, and subjected to tensile mechanical stretching. The
constant crosshead speed was set at 10 mm/min, and the related force
was measured using a 10 N cell. Tensile modulus of elasticity was
calculated using the initial 0−5% linear region of the stress−strain
curve.

Compression Test. Compressive mechanical properties of the
scaffolds were measured by a compression test using Instron 5542
(Instron, Norwood, MA, USA). Samples were produced in the form of
disks with a diameter of 10 mm, and the compression rate was set to 2
mm/min. The compressive modulus was calculated using the initial 0−
5% linear region of the stress−strain curves.

Physical Characterization. Swelling Assessment. Fluid handling
capacity was measured by soaking the samples in 2 mL of PBS. The
weight before and after immersion in the solution was measured with a
high precision scale to assess the swelling ratio every day up to 7 days.
The swelling ratio was calculated on the basis of eq 1.

W W
W

swelling ratio% 100f i

i
= − ×

(1)

where Wf is final weight and Wi is initial weight.
Degradation Profile. The degradation rate of the constructs was

evaluated by placing the samples in 2 mL of PBS at 37 °C. The dry
weight of the specimens was measured before the experiment and then
after 7 and 14 days of incubation using a high precision scale. The
weight loss percentage was calculated on the basis of eq 2.

W W
W

weight loss% 100fd id

id
= − ×

(2)

where Wfd is dry final weight and Wid is dry initial weight.
Cell Studies. MSCs were cultured in growth culture media

composed of alpha MEM supplemented with 10% FBS, 0.2 mM
ascorbic acid, 2 mM L-glutamin, 1% penicillin−streptomycin (PS), and
1 ng/mL bFGF until sufficient confluence was obtained.53 Further, cells
were detached using trypsin-EDTA, encapsulated in the hydrogel
structures at a density of 3× 106 cell/mL, and cultured at 37 °C and 5%
CO2 for 14 days. The two-dimensional (2D) culture control condition
was also assessed, seedingMSCs on culture plates and culturing them at
37 °C and 5% CO2 for 14 days.

Cell Proliferation Assessment. The PrestoBlue assay was performed
to evaluate cell proliferation. The samples were treated with 10% (v/v)
of PrestoBlue solution in the culture medium solution and incubated at
37 °C and 5%CO2 for 1.5 h. The resulted solution was aliquoted in 100
μL aliquots and transferred to a 96 well plate. The fluorescence intensity
was measured using a BioTek Synergy 2 multimodal plate reader
(BioTek Instruments Inc., VT, US).

Cell Viability Assessment. Cell viability was determined using a
LIVE/DEADCell Viability Kit (Invitrogen) to evaluate the response of
cells cultured on the scaffolds.54 At each time point, the constructs were
washed in PBS and treated with 0.5 μL/mL calcein and 2 μL/mL
ethidium homodimer in PBS. The first compound was used for the
green staining of alive cells and the second, for the red staining of dead
cells. Samples were incubated for 10 min at 37 °C and 5% CO2.
Afterward, the samples were washed in PBS and imaged with a
fluorescent microscope (AxioCam MRc5, Carl Zeiss, Germany).

Cell Morphology and Alignment Characterization. Cell morphol-
ogy and alignment were evaluated by staining cell cytoskeletons and
nuclei. Actin-DAPI staining was performed. Samples were treated with
4% paraformaldehyde for 30 min and then washed in PBS 3 times (5
min each). Subsequently, 0.3% (v/v) Triton X-100 in PBS was added
for 15 min, and three washing steps were performed. Samples were
incubated in 1% (w/v) BSA in PBS for 30 min, and a 1:40 dilution of
Alexa Fluor phalloidin in PBS was added for 40 min at room
temperature. Three washing steps were performed. Subsequently,
samples were incubated in 1:500 DAPI solution in PBS for 10 min and
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washed again. Scaffolds were imaged under the fluorescence micro-
scope (AxioCam MRc5, Carl Zeiss, Germany). Cell alignment was
calculated from fluorescence images using ImageJ (National Institute of
Health, USA) by measuring the cytoskeletons orientation (ImageJ
software, OrientationJ).
Collagen Expression Analysis.Collagen I expression was assessed to

evaluate the ECM deposition. The cell-laden constructs were washed in
PBS and then fixed in 4% (w/v) paraformaldehyde for 30 min.
Afterward, three washing steps were performed (5 min each).
Subsequently, 0.3% (v/v) Triton X-100 solution in PBS was added
for 15 min, and another three washing steps were performed. The
nonspecific staining was blocked by incubation in 1% BSA for 30 min at
room temperature (RT). Then, the samples were incubated in an
anticollagen I antibody produced in mouse solution (1:2000 dilution)
overnight. Three washing steps were performed. Subsequently, the
scaffolds were incubated in Alexa Fluor 488 goat antimouse secondary
antibody produced in goat solution (1:300 dilution) in the darkness at
RT for 2 h. After washing the samples, the nuclei were stained with
DAPI solution (1:500) and incubated in the darkness for 10min. Lastly,
two washing steps were performed, and samples were visualized using a
fluorescence microscope (AxioCam MRc5, Carl Zeiss, Germany).
Real-Time PCR Analysis. Electrospun substrate coated cell-laden

hydrogels were mechanically disrupted, and TRIzol (Invitrogen, Inc.)
was used to extract the total RNA from these samples; total RNA yields

were measured using a NanoDrop (Thermo Scientific). One
microgram of total RNA from each sample was reverse transcribed
according to the manufacturer’s instructions using the SuperScript III
First-Strand Synthesis SuperMix (Invitrogen, Inc.). All RT-PCR
reactions were prepared using the iTaq Universal SYBR Green Master
(Thermo Fisher, USA). The 20 μL volume reaction component
included 10 μL ofMaster Mix, 1 μL of forward and reverse primers, and
100 ng of cDNA template, and the final volume was adjusted using a
nuclease free water. Collagen type I, decorin, tenascin-C, scleraxis, and
tenomodulin were selected as target gene primers, and they have been
listed in Table 1. Relative expressions were calculated using a ΔΔCt
method and normalized to GAPDH gene expression.

Biochemical Stimulation. The evaluation of BMP-12 concen-
tration in the culture media was assessed. Previous studies demonstrate
that BMP-12 plays an important role in chemical cellular stimulation as
well as in the tissue homeostasis, healing, and repair, affecting cell
proliferation and migration, collagen production, angiogenesis, and
deposition of ECMproteins.37,42,55 In order to perform the biochemical
stimulation of the cultures, samples were cultured in growth
supplemented with BMP-12. Different concentrations of BMP-12,
such as 0, 1, and 10 ng/mL, were added to the medium to achieve the
most efficient MSC differentiation, spreading, and proliferation and
accelerate the tissue healing and remodeling.

Table 1. Polymerase Chain Reaction (PCR) Primer Sequences

gene forward primer sequence (5′ to 3′) reverse primer sequence (5′ to 3′)
GAPDH CAAGGCTGAGAACGGGAAGC AGGGGGCAGAGATGATGACC
TNMD GATCTTCACTTCCCTACCAACG CTCATCCAGCATGGGGTC
SCX ACACCCAGCCCAAACAGA GCGGTCCTTGCTCAACTTTC
COL I GGCTCCTGCTCCTCTTAGCG CATGGTACCTGAGGCCGTTC
DCR CGCCTCATCTGAGGGAGCTT TACTGGACCGGGTTGCTGAA
TNC GGTGGATGGATTGTGTTCCTGAGA CTGTGTCCTTGTCAAAGGTGGAGA

Figure 1. Schematic of fabrication and stimulation of ML scaffolds. Synthetic electrospun nanofibers were coated by thin layers of cell-laden hydrogel
to fabricate a ML scaffold for tendon tissue engineering. The hydrogel was first cross-linked in a calcium chloride solution and secondarily exposed to
UV light. The cell-laden scaffolds were cultured in bioreactors, which allow the administration of GFs and periodic mechanical stretching to promote
cell alignment and differentiation. SEM images of nanofibrous substrate and then cross section of the ML scaffold are reported in the bottom row.
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Mechanical Stimulation: BioreactorModel.A bioreactor model
was designed and developed to perform the dynamic cell culture on the
proposed scaffolds. The bioreactor system has the potential to provide
an appropriate biochemical and biomechanical environment to
stimulate cell proliferation and differentiation as well as ECM synthesis
under sterile conditions. The bioreactor device was designed to hold
different samples (ranging in size from 5 to 37 mm in length, 0.2 to 13.5
mm in width, and 0.1 to 2 mm thick) between one fixed grip and one
moving grip, which was connected to a pulley through a polymer wire.
The pulley was rotated by a stepper motor controlled by a Raspberry PI
embedded system (Figure S1). Mechanical stimulation parameters
were selected in terms of strain and frequency to simulate the tendon
native biochemical conditions.56,57 The mechanical simulation was
performed by periodically stretching the samples in the axial direction.
Constructs were subjected to 10% strain with a frequency of 1 Hz for 7
days (4 h/day).
Statistical Analysis. All measurements were made in triplicates on

at least three different samples produced from different cell cultures and
tested independently. Data is reported as mean values ± standard
deviation. The one-way ANOVA test was performed, and differences
are displayed as statistically significant when p ≤ 0.05. Statistically
significant values are presented as *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001,
and ****p ≤ 0.0001.

■ RESULTS
In this work, we have designed and fabricated ML scaffolds
composed by an electrospun mat coated by thin layers of
hydrogel. The engineered composite platform was comprised of
multiple compartments that can be independently tailored. The
nanofibrous substrate provided the mechanical support to the
scaffold while the hydrogel structure emulates the micro-
environment and characteristics of the native ECM. The

electrospun substrates were initially soaked in the mixture of
GelMA−Alg, and then, the Alg component was cross-linked
using CaCl2. The GelMA component was then cross-linked by
UV cross-linking. A custom-built bioreactor was designed and
assembled in order to apply biological and periodic mechanical
stimulation to the constructs. The schematic of the fabrication
process and stimulation of theML scaffolds is shown in Figure 1.
PCL has been approved by the FDA for drug delivery devices,

sutures, and adhesion barriers. Moreover, it has been widely
used for fabrication of tissue engineering scaffolds.58,59 PA6 is
also a polymer that has been used in biomedical engineering
applications due to its mechanical strength, toughness, and slow
degradation profile. Nanofibrous substrates were fabricated by
electrospinning of PCL−PA6 solutions in HFIP. The electro-
spinning parameter was adjusted in order to obtain homoge-
neous, beadless, and regular fibers with diameter of 149± 32 nm
(Figure 1). The polymer concentration and the electrospinning
parameters were optimized to produce electrospun structures
which can provide mechanical properties that can support for
the proper function of scaffolds designed for the repair of injured
sites of tendon tissue. Uniaxial tensile test results showed that
the ultimate tensile stress of 5%−5% (w/v) PCL−PA6
substrates was measured at ∼12 MPa (Figure 2A).
The hydrogel coating did not affect the mechanical tensile

properties of the polymeric electrospun constructs. Stress−
strain curves of hydrogel coated ML samples were comparable
with noncoated structures without any significant effect on the
tensile characteristics in terms of ultimate stress, strain, or elastic
modulus, demonstrating that the electrospun component
provided the mechanical properties of the whole construct

Figure 2.Mechanical and physical properties of fibrous ML scaffolds: PCL−PA6 electrospun mat surfaces were coated by 100−150 μm of hydrogel
layers. The hydrogel was composed of 10%GelMA and an optimized concentration of Alg. (A−C) Tensile properties of theML scaffolds are reported
in terms of ultimate tensile stress (A), strain (B), and elastic modulus (C) (n = 5). No significant influence of the hydrogel coating is reported, showing
that the tensile mechanical properties of the PCL−PA6 electrospun construct were maintained. Moreover, the Alg concentration did not influence the
tensile characteristic of ML scaffolds in terms of tensile stress (∼10 MPa), strain (∼80%), and elastic modulus (∼30 MPa). (D) The compressive
modulus of ML constructs was considerably affected by the Alg concentration, showing significantly higher values of up to 27 kPa for 10%−1% and
10%−1.5%GelMA−Alg hydrogel compositions compared to the lowest Alg concentration tested (n = 5). Swelling ratio (E) and weight loss (F) values
were measured to be significantly higher for the ML samples with the lowest Alg content (10%−0.5% GelMA−Alg), compared to the samples with
higher Alg concentration (n = 5). No significant difference was registered between ML scaffolds composed of 10%−1% and 10%−1.5% GelMA−Alg
hydrogels. Significant differences are determined compared to theML 10%−0.5%GelMA−Alg condition (*p < 0.05, **p < 0.01, ***p < 0.001, ****p
< 0.0001).
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(Figure 2A−C). Moreover, different GelMA−Alg hydrogel
compositions containing GelMA 10% (w/v) and Alg 0.5%, 1%,
and 1.5% (w/v) did not considerably influence the tensile
properties of the scaffolds. However, mechanical compressive
properties measured during compression test were significantly
affected by the hydrogel composition. ML scaffolds having
higher Alg concentration (10%−1% and 10%−1.5% GelMA−

Alg) resulted in higher compressive properties, showing
modulus values of up to ∼27 kPa (Figure 2D). The swelling
ratio of ML scaffolds with three different hydrogel compositions
showed a similar trend; softer gels swelled easier. The results
suggested that the lower concentrations of Alg (0.5% w/v)
resulted in higher swelling ratio of about double the value for
those containing Alg 1% (w/v) and Alg 1.5% (w/v) (Figure 2E).

Figure 3. Biological performance of fibrous ML scaffolds. The Alg concentration of the hydrogel layers was optimized, and scaffolds were biologically
characterized. (A) Cell proliferation increased during the culture time for all tested 2D and 3D conditions except for ML 10%−1.5% GelMA−Alg
composition, which appeared to have an inhibitory effect on proliferation (n = 5; significant differences are determined compared to the ML 10%−
0.5% GelMA−Alg condition). (B) The effect of BMP-12 addition on the cell proliferation of cultured MSCs (n = 5). Biochemical stimulation was
investigated considering different concentrations of BMP-12 in the culture medium. (C, D) Live/Dead images ofMSCs cultured into theML scaffolds
show high cell viability (>96% appeared in green color), spreading, and elongation at each time point without the addition of BMP-12 (C) and in the
presence of 10 ng/mL of BMP-12 (D) (n = 3). (E−H). The effect of BMP-12 treatment on MSCs tenogenic gene expression was evaluated through
PCR analysis of tenascin C (E), collagen I (F), tenomodulin (G), and scleraxis (H) tenogenic marker expression that was significantly higher than the
control for 1 (ng/mL) BMP-12 but wasmaximally expressed for 10 ng/mL BMP-12 concentration in the culture media (n = 3). Significant differences:
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Figure 2F illustrates that the 10%−0.5% (w/v) GelMA−AlgML
scaffold performed the fastest degradation rate, losing ∼5% of
the initial dry weight in 14 days, while ML structures with higher
Alg concentration such as 10%−1% (w/v) and 10%−1.5% (w/
v) GelMA−Alg formed scaffolds more resistant to in vitro
degradation conditions.
In order to test the biological properties of the scaffolds,

MSCs were encapsulated into the hydrogel structures and
deposited on the electrospun membranes. The proliferation of
the cells up to 7 days is reported in Figure 3A,B. The graphs
show a linear growth of the cells during the culture time for all
tested conditions. However, after 3 days of culture, cells cultured
in 2D have a higher proliferation rate than cells cultured into 3D
constructs. This is probably due to the flat cell-friendly tissue
culture substrate, which is well-known to allow easy and efficient
cell attachment, signaling, and proliferation.60 However, in
Figure 3A, it is possible to visualize that the proliferation of cells
cultured into ML scaffolds composed of 10%−1.5% (w/v)
GelMA−Alg hydrogel appeared to be inhibited. Cellular growth
and proliferation was significantly higher in hydrogels
containing lower Alg concentration due the formation of stiffer
and denser hydrogels at higher concentrations of Alg, which did
not favor cell migration, spreading, and proliferation.61

Fluorescence images of the representative MSCs cultured into
the ML scaffold constructs after Live/Dead staining, where live
cells appear green while nonviable cells are stained in red,
demonstrated that the majority of the cells were alive (>94%),
spread, and elongated. There was not an evident difference that
could be visualized between different hydrogel compositions
(Figure S2). Considering themechanical and physical properties
of different hydrogel composition and their effect on cellular
proliferation, ML scaffold composed of an electrospun mat
coated by 10%−1% (w/v) GelMA−Alg hydrogel layers was
selected and used for the rest of the study.
Biochemical stimuli were applied to promote and favor the

tenogenic differentiation of MSCs encapsulated within the ML

constructs. BMP-12 was selected as a GF to influence the cell
fate into tenocyte lineage. A concentration of BMP-12 into the
culture medium was selected to stimulate the cells toward
tenogenic differentiation. BMP-12 solutions at different
concentrations (0, 1, and 10 ng/mL) were tested. Cells
proliferated linearly during the culture time for all the tested
concentrations (Figure 3B). Among 3D conditions, a significant
increase of cell proliferation was registered at day 7 when 10 ng/
mL of BMP-12 was added into the medium. The viability of the
cells cultured for 7 days into the scaffold is shown in Figures
3C,D and S2. The Live/Dead Cell Viability Assay results
suggested that the majority of cells were alive up to 7 days of
culture in modified media (>96%), proving that the selected
BMP-12 concentrations were not cytotoxic.
To identify the role of BMP-12 on stem cell differentiation,

the expression of key tenogenic markers such as tenomodulin,
collagen I, scleraxis, and tenascin C was assessed (Figure 3E−
H). At early stages, the tenogenic gene expression showed no
significant difference for any of the BMP-12 concentrations
tested (with the exception of the scleraxis marker). However,
from day 3 of culture, an important enhancement of the
tenogenic marker expression was detected at each time point in
the presence of BMP-12. A treatment with 10 ng/mL of BMP-12
showed a clear improvement on gene expression in terms of
tenomodulin, collagen I, tenascin C, and scleraxis markers
compared to the untreated condition, suggesting the positive
role of BMP-12 in inducing tenogenic differentiation of MSCs.
The addition of 10 ng/mL of BMP-12 into the culture medium
appeared to simultaneously improve cell proliferation and
differentiation. We speculate that this trend was due to the lack
of differentiation of MSCs to mature tenocytes, which did not
affect the cell division cycle. Thus, a 10 ng/mL concentration of
BMP-12 into the culture medium was selected, and the
biochemical stimulation of the construct was performed using
that composition.

Figure 4.Mechanical and biochemical stimulation of fibrous ML scaffolds. (A) Fluorescence images of the cell cytoskeletons after 7 days of culture
show cell alignment in the direction of the stretching for the scaffolds mechanically stimulated, while random cell orientation was observed for
construct cultured under static conditions. (B) The alignment of MSCs within the ML scaffolds was quantified, reporting that cells dynamically
cultured and chemically stimulated can align up to 40% in the direction of the strain (n = 3; significant differences are determined compared to the SC
BMP-12 0 ng/mL condition: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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The constructs were biochemically and mechanically
stimulated to mimic the natural function of tendons. The
biochemical stimuli were provided by culturing the samples in
10 ng/mL BMP-12 modified culture medium. A custom-built
bioreactor was used to perform the dynamic culture of the
constructs. The scaffolds were mounted into the bioreactor
chamber and placed and cultured in the incubator (37 °C, 5%
CO2), as shown in Figure S1. Mechanical stimulation
parameters were selected in terms of strain and frequency to
simulate the tendon native biochemical conditions. The
constructs were cultured into the bioreactor chamber and
subjected to tensile cyclic loading for 7 days (4 h/day). The
combination of mechanical and biochemical stimulation as well
as their synergistic effect on cellular functions was evaluated.
The morphology of the MSCs cultured for 7 days within the ML
scaffolds was significantly affected by mechanical stimulation.
The applied mechanical stimuli resulted in a longitudinal
orientation of cell cytoskeletons as demonstrated by F-actin
fluorescence images (Figures 4A and S3). The alignment
quantifications are reported in Figures 4B and S4 for various
culture conditions. Cells cultured in dynamic condition (DC)
tended to align in the direction of the applied strain up to 40%,
while cells cultured in static condition (SC) showed random
orientation.
Additionally, the maturation and function of the cultured cells

were investigated under biochemical and mechanical stimuli.
The expression of collagen I, as the main component of native
tendon ECM, was assessed by staining against the protein. The
biochemical stimulation of the cultures resulted in a significant
enhancement of collagen I production while the mechanical
input promoted a more organized and oriented collagen
expression, as shown in Figure S5. On the other hand, the
mechanical stimulation showed a positive impact on prolifer-
ation rate of the cultured cells over time (Figure 5A), suggesting
that dynamic culture condition supported cell viability and
promoted cell proliferation, as also reported by previous
studies.50 Interestingly, the combination of mechanical and

biochemical stimuli resulted in higher cellular proliferation in
comparison to the cultures that were exposed to a single
stimulation.
The influence of the applied mechanical strain on MSCs

cultured into the ML scaffolds was investigated in terms of
potential tenogenic differentiation. The gene expression of the
specific tenogenic markers such as tenomodulin, collagen I,
scleraxis, decorin, and tenascin C was analyzed to evaluate the
cell differentiation under dynamic culture conditions, as already
assessed in previous studies.49,62−64 The results indicated a
significant enhancement of the tenogenic differentiation of cells
cultured under dynamic conditions. Moreover, it was observed
that the combination of mechanical and biochemical stimuli
induced a synergistic effect, which further improved the
tenogenic gene expression (Figure 5B−F).

■ DISCUSSION
Tendons are highly organized tissues formed from aligned
fibrillar collagen fibers. To recapitulate this fibrous architecture,
substrates made of nanofibers were generated using electro-
spinning of PCL−PA6. Electrospun constructs are mechanically
strong and are easy-to-suture during surgical implantation.
However, PCL−PA6 constructs are noted to be hydrophobic
and do not possess biological cell binding motifs.20 To create an
environment suitable for cellular growth, the substrates were
coated with layers of cell-laden GelMA−Alg hydrogel. Alg was
used for two reasons: (1) Alg facilitated the formation of a
uniform hydrogel layer on the electrospun substrates; (2) a
niche formed from polysaccharides and proteins similar to
native ECMwas created. More in detail, alginate was introduced
into the hydrogel composition to allow the fabrication of a
hydrogel layer with uniform thickness. In this approach, the
substrates were dip coated with hydrogel and fast cross-linking
of the hydrogel layer was important to preserve its uniform
thickness. The presence of alginate enabled the rapid cross-
linking of the hydrogel layer by CaCl2 and physically entrapping
GelMA prepolymers. GelMA was then cross-linked using UV

Figure 5.Mechanical and biochemical stimulation effects onMSCs encapsulated intoML scaffolds. (A) Proliferation rate ofMSCswas registered to be
significantly improved by the combination of the mechanical and biochemical stimuli at each time point (n = 3). (B−F) Data representing Rt-PCR of
mRNA expression of tenomodulin (B), collagen I (C), scleraxis (D), decorin (E), and tenascin C (F) markers. A significantly higher expression can be
observed in the case of scaffolds treated with BMP-12. However, an even greater improvement of the tenogenic differentiation was achieved in the case
of samples subjected to a combination of mechanical and biochemical stimuli (n = 3; significant differences: *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001).
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light to form an independent polymeric network. GelMA
possesses cell binding moieties and has been successfully used
for culture of various tissues.27,53,65,66 Previously, it was
demonstrated that alginate at concentrations lower than 1%
(w/v) does not significantly affect the cell−GelMA inter-
actions.10,22 The engineered composite platform was comprised
of multiple compartments that can be independently tailored.
The nanofibrous substrate provided the mechanical support to
the scaffold and facilitated the implantation of the constructs at
the injury site. TheML scaffold has the novelty to independently
make the optimization of each compartment possible. Thus, it is
possible to encapsulate cells in a cell-friendly environment,
which can emulate the ECM ambience, while having adequate
mechanical properties for the application. Moreover, the
presence of the electrospun mat can potentially facilitate the in
vivo implantation, which would not be possible using hydrogel-
based scaffolds.
Recently, a method was developed by Tamayol et al. enabling

the fabrication of stable structures from various proteins in
which Alg was used to form a stable template entrapping protein
chains until they were properly cross-linked.61,67

The polymer concentration and the electrospinning param-
eters were optimized to produce electrospun structures, which
provide mechanical properties that can support the proper
function of scaffolds designed for the repair of injured sites of
tendon tissue. The mechanical properties were measured in two
directions. In the lateral direction, the electrospun substrate
acted as a reinforcement. Since the tensile modulus of the fibrous
substrate was significantly higher than the hydrogel layer, no
significant change was observed after the addition of the
hydrogel layer. Particularly, the value of ultimate tensile stress is
comparable with native tendons data previously reported in the
literature,68 showing the suitability of the scaffold for tendon
applications. On the other hand, in the perpendicular direction,
the mechanical load was mainly absorbed by the hydrogel layers
and a significant difference between the measured perpendicular
compressive and lateral tensile moduli was observed: higher Alg
concentration led to higher compression properties because of
the formation of interpenetrating network hydrogels with stiffer
structures.65 For this reason, the hydrogel composition could
significantly affect the mechanical properties in the perpendic-
ular direction without affecting the properties in the lateral
direction.
The rate of tenogenesis is slow, and a suitable scaffold should

remain stable until the new tissues have deposited strong ECM
to withstand the exerted mechanical forces. Although the
scaffolds had multicompartments with different compositions,
the focus of the degradation experiment was the reinforcing
nanofibrous substrate. The degradation of polymeric substrate is
mainly due to hydrolysis, and we used PBS, which captures the
physiological properties of the native tissues. The degradation of
GelMA is enzymatic, as it has been reported in several
studies.27,69−71 Additionally, hydrolysis of the Alg component
also influenced the weight loss of the final ML structures, and
higher Alg concentration formed scaffolds more resistant to in
vitro degradation conditions. On the other hand, softer gels
swelled easier and lower concentrations of Alg resulted in higher
swelling ratio, due to the less dense and weaker polymeric
networks, which can accommodate more water molecules,
leading to higher fluid loading capacity.72

The biological characterization of the scaffolds showed that
cellular growth and proliferation of MSCs were registered to be
significantly higher into ML scaffolds having lower Alg

concentration. The observed trend in cellular growth was due
the formation of stiffer and denser hydrogels at higher
concentrations of Alg, which did not favor cell migration,
spreading, and proliferation.61

Tendons undergo mechanical loading during its physiological
operation, and there are a number of studies suggesting the
positive role of mechanical stimulation on cellular alignment and
differentiation.56,57,73 However, the synergistic effect of BMP-12
andmechanical stimulation on cellular growth, morphology, and
differentiation is not well understood in the literature. To
understand the relative and synergistic effect of biochemical and
mechanical stimulation, the constructs were biochemically and
mechanically stimulated to mimic the natural function of tendon
and simulate its native biochemical conditions. Dynamic culture
conditions showed a positive effect on cellular proliferation,
according to previous studies.50 Interestingly, the combination
of mechanical and biochemical stimuli resulted in higher cellular
proliferation in comparison to the cultures that were exposed to
a single stimulation. Moreover, mechanical tensile stretching
conditions led to cellular integrin-mediated focal adhesions and
cytoskeleton deformation response, which resulted in a
preferential, longitudinal cell orientation. Since that electrospun
fibrous mat had a random fibers distribution, it was postulated
that cell alignment was not related to the morphology and
architecture of the fibrous substrate. Thus, the observed changes
in the cellular alignment probably was due to the cyclic
mechanical tensile stimulation of the cultures. The mechanical
stimulation should have promoted cellular reorganization in the
direction of the stretching, as it has also been observed in
previous studies.50,51 Additionally, collagen I expression was
assessed in order to evaluate the ECM deposition. The greater
expression of collagen I demonstrated the higher ECM
production and deposition by cells treated with BMP-12. The
mechanical input, however, promoted a more organized and
oriented collagen production, mimicking the natural tendon
ECM structure. Results were in agreement with previous works
that demonstrated the alignment of collagen and ECM
deposition under mechanical tensile stretching conditions.51

A significant enhancement of the tenogenic differentiation of
cells cultured under dynamic conditions was also ob-
served.49,64,74 However, it was observed that the combination
of mechanical and biochemical stimuli induced a synergistic
effect, which further improved the tenogenic gene expression,
confirming the positive role of BMP-12 on tenogenic differ-
entiation without exerting an inhibitory effect at the studied
range.42,55,75 The simultaneous biochemical and mechanical
stimulation results in a significantly higher expression level of
tenogenic specific markers compared to the nonstimulated
culture condition, suggesting that the proposed 3D ML system
can be potentially used for engineering of functional tendons.
One of the limitations of the proposed approach was the need

for in vitro maturation of the cultured tissues prior to
implantation. This means that the patients should suffer from
complications associated to the injury prior to maturation of the
tissue. However, the applied mechanical stimulations were
selected to recapitulate the mechanical stresses applied to
tendon tissues. Thus, it is expected that an unmatured tissue can
still receive sufficient mechanical cues postimplantation to
mature in vivo.
Moreover, the scaffold we proposed requires the treatment

with GFs supplemented in the culture media, in order to
improve the tenogenic differentiation of the encapsulated cells.
The possibility of loading GFs into the electrospun mat or
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binding them to the hydrogel backbone enable the implantation
of the construct prior to cellular differentiation.

■ CONCLUSIONS
In this work, we designed and fabricated 3D ML scaffolds
formed from electrospun nanofibrous substrates coated by thin
layers of cell-laden hydrogel for tendon regeneration. The
composition of the hydrogel was tailored independently to
ensure proper support for cellular growth and differentiation.
The scaffolds were both biochemically and mechanically
stimulated. The concentration of the chemical stimulus
(BMP-12) was selected to facilitate tenogenic differentiation
of MSCs. The cultures were mechanically stimulated in a
bioreactor showing the positive role of the tested dynamic
culture condition on cell alignment and tenogenic differ-
entiation. Our results also demonstrated that the addition of
the selected amount of BMP-12 (10 ng/mL) induces tenogenic
differentiation more effectively during dynamic stimulation
compared to static conditions. The synergistic effect of
mechanical and biochemical stimulation results in an enhance-
ment of cell adhesion, proliferation, alignment, and differ-
entiation, illustrating the potential of the scaffold and the
bioreactor system for tendon tissue engineering. These results
provide insight on selection of proper culture conditions for
engineering highly organized and biomimetic tendon tissues. In
addition, the proposed ML constructs in which each compart-
ment can be independently tailored paves the way for
engineering tissue-like constructs with suitable mechanical
properties at both tissue and cell levels. Further investigations
are required to validate the possibility of loading GFs into the
scaffold components to facilitate the tissue integration upon its
implantation, which is essential for the potential clinical
translation of the system.
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